Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Circ Heart Fail ; 17(4): e011110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567527

RESUMO

BACKGROUND: Mutations in LMNA encoding nuclear envelope proteins lamin A/C cause dilated cardiomyopathy. Activation of the AKT/mTOR (RAC-α serine/threonine-protein kinase/mammalian target of rapamycin) pathway is implicated as a potential pathophysiologic mechanism. The aim of this study was to assess whether pharmacological inhibition of mTOR signaling has beneficial effects on heart function and prolongs survival in a mouse model of the disease, after onset of heart failure. METHODS: We treated male LmnaH222P/H222P mice, after the onset of heart failure, with placebo or either of 2 orally bioavailable mTOR inhibitors: everolimus or NV-20494, a rapamycin analog highly selective against mTORC1. We examined left ventricular remodeling, and the cell biological, biochemical, and histopathologic features of cardiomyopathy, potential drug toxicity, and survival. RESULTS: Everolimus treatment (n=17) significantly reduced left ventricular dilatation and increased contractility on echocardiography, with a 7% (P=0.018) reduction in left ventricular end-diastolic diameter and a 39% (P=0.0159) increase fractional shortening compared with placebo (n=17) after 6 weeks of treatment. NV-20494 treatment (n=15) yielded similar but more modest and nonsignificant changes. Neither drug prevented the development of cardiac fibrosis. Drug treatment reactivated suppressed autophagy and inhibited mTORC1 signaling in the heart, although everolimus was more potent. With regards to drug toxicity, everolimus alone led to a modest degree of glucose intolerance during glucose challenge. Everolimus (n=20) and NV-20494 (n=20) significantly prolonged median survival in LmnaH222P/H222P mice, by 9% (P=0.0348) and 11% (P=0.0206), respectively, compared with placebo (n=20). CONCLUSIONS: These results suggest that mTOR inhibitors may be beneficial in patients with cardiomyopathy caused by LMNA mutations and that further study is warranted.


Assuntos
Cardiomiopatias , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Cardíaca , Camundongos , Humanos , Masculino , Animais , Everolimo/farmacologia , Everolimo/uso terapêutico , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Inibidores de MTOR , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatias/patologia , Mutação , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mamíferos/metabolismo
2.
Cell Death Discov ; 10(1): 29, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225256

RESUMO

The apoptotic intrinsic pathway is initiated by perforation of the mitochondrial outer membrane by the effector pro-apoptotic proteins of the Bcl-2 family, Bax and Bak. Bax and Bak need to be activated, a process facilitated by the action of BH3-only pro-apoptotic members of the Bcl-2 family. The latter either directly activates the effector proteins or antagonizes the action of pro-survival Bcl-2 family members such as Bcl-xL. The nuclear envelope is a known target of the apoptotic machinery; however, it may also act as mediator of apoptosis. We showed previously that the nuclear envelope protein nesprin-2, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex, can bind to Bax in close proximity to the mitochondria and that the binding increases in apoptotic cells. We now show that depleting nesprin-2 inhibits the apoptotic mitochondrial pathway as measured by Bax and Bak activation and cytochrome c release. This survival effect was Bcl-xL-dependent. Nesprin-2 depletion also inhibited spontaneous exposure of the N-terminus of Bak in cells lacking Bcl-xL and increased the presence of Bcl-xL and Bax in the mitochondria. These results indicate that nesprin-2 promotes Bak activation and regulates mitochondrial translocation/retrotranslocation of Bcl-2 family proteins. Our findings demonstrate a new apoptotic pathway whereby the nuclear envelope, via nesprin-2, regulates apoptosis.

3.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194265

RESUMO

Depletion of torsinA from hepatocytes leads to reduced liver triglyceride secretion and marked hepatic steatosis. TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activator, lamina-associated polypeptide 1 (LAP1) or luminal domain-like LAP1 (LULL1). We previously demonstrated that depletion of LAP1 from hepatocytes has more modest effects on liver triglyceride secretion and steatosis development than depletion of torsinA. We now show that depletion of LULL1 alone does not significantly decrease triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Depletion of both LAP1 and torsinA from hepatocytes generated phenotypes similar to those observed with only torsinA depletion, implying that the 2 proteins act in the same pathway in liver lipid metabolism. Our results demonstrate that torsinA and its activators dynamically regulate hepatic lipid metabolism.


Assuntos
Proteínas de Transporte , Metabolismo dos Lipídeos , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo
4.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38078930

RESUMO

Mutations in genes encoding nuclear lamins cause diseases called laminopathies. In this issue, Hasper et al. (https://doi.org/10.1083/jcb.202307049) show that lamin A/C and the prelamin A variant in Hutchinson-Gilford progeria syndrome have relatively long lifetimes in affected tissues.


Assuntos
Lamina Tipo A , Progéria , Humanos , Laminas/genética , Lamina Tipo A/genética , Lâmina Nuclear , Progéria/genética
5.
Sci Rep ; 13(1): 21540, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057357

RESUMO

Exome sequencing (ES) has been used in a variety of clinical settings but there are limited data on its utility for diagnosis and/or prediction of monogenic liver diseases. We developed a curated list of 502 genes for monogenic disorders associated with liver phenotypes and analyzed ES data for these genes in 758 patients with chronic liver diseases (CLD). For comparison, we examined ES data in 7856 self-declared healthy controls (HC), and 2187 patients with chronic kidney disease (CKD). Candidate pathogenic (P) or likely pathogenic (LP) variants were initially identified in 19.9% of participants, most of which were attributable to previously reported pathogenic variants with implausibly high allele frequencies. After variant annotation and filtering based on population minor allele frequency (MAF ≤ 10-4 for dominant disorders and MAF ≤ 10-3 for recessive disorders), we detected a significant enrichment of P/LP variants in the CLD cohort compared to the HC cohort (X2 test OR 5.00, 95% CI 3.06-8.18, p value = 4.5e-12). A second-level manual annotation was necessary to capture true pathogenic variants that were removed by stringent allele frequency and quality filters. After these sequential steps, the diagnostic rate of monogenic disorders was 5.7% in the CLD cohort, attributable to P/LP variants in 25 genes. We also identified concordant liver disease phenotypes for 15/22 kidney disease patients with P/LP variants in liver genes, mostly associated with cystic liver disease phenotypes. Sequencing results had many implications for clinical management, including familial testing for early diagnosis and management, preventative screening for associated comorbidities, and in some cases for therapy. Exome sequencing provided a 5.7% diagnostic rate in CLD patients and required multiple rounds of review to reduce both false positive and false negative findings. The identification of concordant phenotypes in many patients with P/LP variants and no known liver disease also indicates a potential for predictive testing for selected monogenic liver disorders.


Assuntos
Nefropatias , Hepatopatias , Humanos , Sequenciamento do Exoma , Frequência do Gene , Fenótipo , Hepatopatias/diagnóstico , Hepatopatias/genética
6.
Nucleus ; 14(1): 2270345, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37885131

RESUMO

As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.


Assuntos
Lamina Tipo A , Progéria , Humanos , Animais , Camundongos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Promoção da Saúde , Progéria/genética , Progéria/metabolismo , Envelhecimento/genética , Proteínas de Membrana/metabolismo
7.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37547008

RESUMO

TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activators lamina-associated polypeptide 1 (LAP1) in the perinuclear space or luminal domain-like LAP1 (LULL1) throughout the endoplasmic reticulum. However, the interaction of torsinA with LAP1 and LULL1 has not yet been shown to modulate a defined physiological process in mammals in vivo . We previously demonstrated that depletion of torsinA from mouse hepatocytes leads to reduced liver triglyceride secretion and marked steatosis, whereas depletion of LAP1 had more modest similar effects. We now show that depletion of LULL1 alone does not significantly decrease liver triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 from hepatocytes leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Our results demonstrate that torsinA and its activators dynamically regulate a physiological process in mammals in vivo .

8.
J Lipid Res ; 63(10): 100277, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100089

RESUMO

Lipid droplets (LDs) are generally considered to be synthesized in the ER and utilized in the cytoplasm. However, LDs have been observed inside nuclei in some cells, although recent research on nuclear LDs has focused on cultured cell lines. To better understand nuclear LDs that occur in vivo, here we examined LDs in primary hepatocytes from mice following depletion of the nuclear envelope protein lamina-associated polypeptide 1 (LAP1). Microscopic image analysis showed that LAP1-depleted hepatocytes contain frequent nuclear LDs, which differ from cytoplasmic LDs in their associated proteins. We found type 1 nucleoplasmic reticula, which are invaginations of the inner nuclear membrane, are often associated with nuclear LDs in these hepatocytes. Furthermore, in vivo depletion of the nuclear envelope proteins lamin A and C from mouse hepatocytes led to severely abnormal nuclear morphology, but significantly fewer nuclear LDs than were observed upon depletion of LAP1. In addition, we show both high-fat diet feeding and fasting of mice increased cytoplasmic lipids in LAP1-depleted hepatocytes but reduced nuclear LDs, demonstrating a relationship of LD formation with nutritional state. Finally, depletion of microsomal triglyceride transfer protein did not change the frequency of nuclear LDs in LAP1-depleted hepatocytes, suggesting that it is not required for the biogenesis of nuclear LDs in these cells. Together, these data show that LAP1-depleted hepatocytes represent an ideal mammalian system to investigate the biogenesis of nuclear LDs and their partitioning between the nucleus and cytoplasm in response to changes in nutritional state and cellular metabolism in vivo.


Assuntos
Gotículas Lipídicas , Membrana Nuclear , Camundongos , Animais , Gotículas Lipídicas/metabolismo , Membrana Nuclear/metabolismo , Lamina Tipo A/metabolismo , Hepatócitos/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Lipídeos , Mamíferos/metabolismo
9.
J Clin Transl Hepatol ; 10(2): 197-206, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35528980

RESUMO

Background and Aims: Vibration-controlled transient elastography (VCTE) is a noninvasive tool that uses liver stiffness measurement (LSM) to assess fibrosis. Since real-life data during everyday clinical practice in the USA are lacking, we describe the patterns of use and diagnostic performance of VCTE in patients at an academic medical center in New York City. Methods: Patients who received VCTE scans were included if liver biopsy was performed within 1 year. Diagnostic performance of VCTE in differentiating dichotomized fibrosis stages was assessed via area under the receiver operating characteristics (AUROC). Fibrosis stage determined from VCTE LSM was compared to liver biopsy. Results: Of 109 patients, 49 had nonalcoholic fatty liver disease, 16 chronic hepatitis C, 15 congestive hepatopathy, and 22 at least two etiologies. AUROC was 0.90 for differentiating cirrhosis (stage 4) with a positive predictive value (PPV) range of 0.28 to 0.45 and negative predictive value range of 0.96 to 0.98. For 31 (32%) patients, VCTE fibrosis stage was at least two stages higher than liver biopsy fibrosis stage. Thirteen of thirty-five patients considered to have cirrhosis by VCTE had stage 0 to 2 and 12 stage 3 fibrosis on liver biopsy. Conclusions: VCTE has reasonable diagnostic accuracy and is reliable at ruling out cirrhosis. However, because of its low PPV, caution must be exercised when used to diagnose cirrhosis, as misdiagnosis can lead to unnecessary health care interventions. In routine practice, VTCE is also sometimes performed for disease etiologies for which it has not been robustly validated.

10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197292

RESUMO

Prelamin A is a farnesylated precursor of lamin A, a nuclear lamina protein. Accumulation of the farnesylated prelamin A variant progerin, with an internal deletion including its processing site, causes Hutchinson-Gilford progeria syndrome. Loss-of-function mutations in ZMPSTE24, which encodes the prelamin A processing enzyme, lead to accumulation of full-length farnesylated prelamin A and cause related progeroid disorders. Some data suggest that prelamin A also accumulates with physiological aging. Zmpste24-/- mice die young, at ∼20 wk. Because ZMPSTE24 has functions in addition to prelamin A processing, we generated a mouse model to examine effects solely due to the presence of permanently farnesylated prelamin A. These mice have an L648R amino acid substitution in prelamin A that blocks ZMPSTE24-catalyzed processing to lamin A. The LmnaL648R/L648R mice express only prelamin and no mature protein. Notably, nearly all survive to 65 to 70 wk, with ∼40% of male and 75% of female LmnaL648R/L648R mice having near-normal lifespans of 90 wk (almost 2 y). Starting at ∼10 wk of age, LmnaL648R/L648R mice of both sexes have lower body masses than controls. By ∼20 to 30 wk of age, they exhibit detectable cranial, mandibular, and dental defects similar to those observed in Zmpste24-/- mice and have decreased vertebral bone density compared to age- and sex-matched controls. Cultured embryonic fibroblasts from LmnaL648R/L648R mice have aberrant nuclear morphology that is reversible by treatment with a protein farnesyltransferase inhibitor. These novel mice provide a model to study the effects of farnesylated prelamin A during physiological aging.


Assuntos
Lamina Tipo A/metabolismo , Longevidade , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Progéria/genética , Animais , Sítios de Ligação , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Camundongos , Mutação , Fenótipo , Prenilação
11.
Annu Rev Pathol ; 17: 159-180, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34672689

RESUMO

The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. Laminopathies are diseases caused by mutations in genes encoding protein components of the lamina and these other nuclear envelope substructures. Mutations in the single gene encoding lamin A and C, which are expressed in most differentiated somatic cells, cause diseases affecting striated muscle, adipose tissue, peripheral nerve, and multiple systems with features of accelerated aging. Mutations in genes encoding other nuclear envelope proteins also cause an array of diseases that selectively affect different tissues or organs. In some instances, the molecular and cellular consequences of laminopathy-causing mutations are known. However, even when these are understood, mechanisms explaining specific tissue or organ pathology remain enigmatic. Current mechanistic hypotheses focus on how alterations in the nuclear envelope may affect gene expression, including via the regulation of signaling pathways, or cellular mechanics, including responses to mechanical stress.


Assuntos
Laminopatias , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatias/genética , Mutação , Transdução de Sinais/genética
12.
JGH Open ; 5(10): 1166-1171, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34622003

RESUMO

BACKGROUND AND AIM: While many studies have reported on liver injury in patients with coronavirus disease 2019 (COVID-19), none have specifically addressed the significance of hepatic jaundice. We aimed to determine the clinical consequences and etiologies of jaundice in patients with COVID-19. METHODS: We retrospectively analyzed clinical features, laboratory abnormalities, and rates of survival and intensive care unit admission in 551 patients with COVID-19, hospitalized between 1 March 2020, and 31 May 2020 at a tertiary care academic medical center. Hepatic jaundice was defined as a serum total bilirubin concentration >2.5 mg/dL and a direct bilirubin concentration >0.3 mg/dL that was >25% of the total. Liver injury was characterized as cholestatic, mixed, or hepatocellular at the time of peak serum total bilirubin concentration by calculating the R factor. RESULTS: Hepatic jaundice was present in 49 (8.9%) patients and associated with a mortality rate of 40.8% and intensive care unit admission rate of 69.4%, both significantly higher than for patients without jaundice. Jaundiced patients had an increased frequency of fever, leukopenia, leukocytosis, thrombocytopenia, hypotension, hypoxemia, elevated serum creatinine concentration, elevated serum procalcitonin concentration, and sepsis. Nine jaundiced patients had isolated hyperbilirubinemia. Of the 40 patients with abnormally elevated serum alanine aminotransferase or alkaline phosphatase activities, 62.5% had a cholestatic, 20.0% mixed, and 17.5% hepatocellular pattern of liver injury. CONCLUSION: Hepatic jaundice in patients with COVID-19 is associated with high mortality. The main etiologies of liver dysfunction leading to jaundice appear to be sepsis, severe systemic inflammation, and hypoxic/ischemic hepatitis.

13.
Cell Rep ; 36(8): 109601, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433058

RESUMO

Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.


Assuntos
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Lamina Tipo A/metabolismo , Laminopatias/metabolismo , Músculo Estriado/metabolismo , Sarcômeros/metabolismo , Adolescente , Adulto , Animais , Linhagem Celular , Criança , Humanos , Lamina Tipo A/genética , Laminopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Estriado/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutação , Fosforilação , Transdução de Sinais , Adulto Jovem
14.
J Clin Transl Hepatol ; 9(4): 551-558, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34447685

RESUMO

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) is a global threat, affecting more than 100 million people and causing over 2 million deaths. Liver laboratory test abnormalities are an extrapulmonary manifestation of COVID-19, yet characterization of hepatic injury is incomplete. Our objective was to further characterize and identify causes of liver injury in patients with COVID-19. METHODS: We conducted a retrospective cohort study of 551 patients hospitalized with COVID-19 at NewYork-Presbyterian Hospital/Columbia University Irving Medical Center between March 1, 2020 and May 31, 2020. We analyzed patient demographics, liver laboratory test results, vital signs, other relevant test results, and clinical outcomes (mortality and intensive care unit admission). RESULTS: Abnormal liver laboratory tests were common on hospital admission for COVID-19 and the incidence increased during hospitalization. Of those with elevated serum alanine aminotransferase and/or alkaline phosphatase activities on admission, 58.2% had a cholestatic injury pattern, 35.2% mixed, and 6.6% hepatocellular. Comorbid liver disease was not associated with outcome; however, abnormal direct bilirubin or albumin on admission were associated with intensive care unit stay and mortality. On average, patients who died had greater magnitudes of abnormalities in all liver laboratory tests than those who survived. Ischemic hepatitis was a mechanism of severe hepatocellular injury in some patients. CONCLUSIONS: Liver laboratory test abnormalities are common in hospitalized patients with COVID-19, and some are associated with increased odds of intensive care unit stay or death. Severe hepatocellular injury is likely attributable to secondary effects such as systemic inflammatory response syndrome, sepsis, and ischemic hepatitis.

15.
J Cell Sci ; 134(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33536248

RESUMO

The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from LmnaH222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in LmnaH222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.


Assuntos
Lamina Tipo A , Músculo Estriado , Animais , Citoesqueleto , Lamina Tipo A/genética , Lamina Tipo B/genética , Camundongos , Mutação/genética , Lâmina Nuclear
16.
Hum Mol Genet ; 29(24): 3919-3934, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33388782

RESUMO

Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.


Assuntos
Cardiomiopatias/patologia , Modelos Animais de Doenças , Coração/fisiopatologia , Lamina Tipo A/genética , Distrofias Musculares/patologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Feminino , Homeostase , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/etiologia , Distrofias Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
17.
FEBS J ; 288(9): 2757-2772, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32799420

RESUMO

Progeroid laminopathies are characterized by the premature appearance of certain signs of physiological aging in a subset of tissues. They are caused by mutations in genes coding for A-type lamins or lamin-binding proteins. Here, we review how different mutations causing progeroid laminopathies alter protein structure or protein-protein interactions and how these impact on mechanisms that protect cell viability and function. One group of progeroid laminopathies, which includes Hutchinson-Gilford progeria syndrome, is characterized by accumulation of unprocessed prelamin A or variants. These are caused by mutations in the A-type lamin gene (LMNA), altering prelamin A itself, or in ZMPSTE24, encoding an endoprotease involved in its processing. The abnormally expressed farnesylated proteins impact on various cellular processes that may contribute to progeroid phenotypes. Other LMNA mutations lead to the production of nonfarnesylated A-type lamin variants with amino acid substitutions in solvent-exposed hot spots located mainly in coil 1B and the immunoglobulin fold domain. Dominant missense mutations might reinforce interactions between lamin domains, thus giving rise to excessively stabilized filament networks. Recessive missense mutations in A-type lamins and barrier-to-autointegration factor (BAF) causing progeroid disorders are found at the interface between these interacting proteins. The amino acid changes decrease the binding affinity of A-type lamins for BAF, which may contribute to lamina disorganization, as well as defective repair of mechanically induced nuclear envelope rupture. Targeting these molecular alterations in A-type lamins and associated proteins identified through structural biology studies could facilitate the design of therapeutic strategies to treat patients with rare but severe progeroid laminopathies.


Assuntos
Lamina Tipo A/genética , Laminopatias/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Progéria/genética , Aminoácidos/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lamina Tipo A/ultraestrutura , Laminopatias/patologia , Proteínas de Membrana/ultraestrutura , Metaloendopeptidases/ultraestrutura , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestrutura , Progéria/patologia , Conformação Proteica
18.
Cell Death Discov ; 6(1): 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024575

RESUMO

The canonical function of Bcl-2 family proteins is to regulate mitochondrial membrane integrity. In response to apoptotic signals the multi-domain pro-apoptotic proteins Bax and Bak are activated and perforate the mitochondrial outer membrane by a mechanism which is inhibited by their interaction with pro-survival members of the family. However, other studies have shown that Bax and Bak may have additional, non-canonical functions, which include stress-induced nuclear envelope rupture and discharge of nuclear proteins into the cytosol. We show here that the apoptotic stimuli cisplatin and staurosporine induce a Bax/Bak-dependent degradation and subcellular redistribution of nesprin-1 and nesprin-2 but not nesprin-3, of the linker of nucleoskeleton and cytoskeleton (LINC) complex. The degradation and redistribution were caspase-independent and did not occur in Bax/Bak double knockout (DKO) mouse embryo fibroblasts (MEFs). Re-expression of Bax in Bax/Bak DKO MEFs restored stress-induced redistribution of nesprin-2 by a mechanism which requires Bax membrane localization and integrity of the α helices 5/6, and the Bcl-2 homology 3 (BH3) domain. We found that nesprin-2 interacts with Bax in close proximity to perinuclear mitochondria in mouse and human cells. This interaction requires the mitochondrial targeting and N-terminal region but not the BH3 domain of Bax. Our results identify nesprin-2 as a Bax binding partner and also a new function of Bax in impairing the integrity of the LINC complex.

19.
Cell Death Discov ; 6: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351716

RESUMO

Apoptosis is characterized by the destruction of essential cell organelles, including the cell nucleus. The nuclear envelope (NE) separates the nuclear interior from the cytosol. During apoptosis, the apoptotic machinery, in particular caspases, increases NE permeability by cleaving its proteins, such as those of the nuclear pore complex (NPC) and the nuclear lamina. This in turns leads to passive diffusion of cytosolic apoptogenic proteins, such as caspases and nucleases, through NPCs into the nucleus and the subsequent breakdown of the NE and destruction of the nucleus. However, NE leakiness at early stages of the apoptotic process can also occur in a caspase-independent manner, where Bax, by a non-canonical action, promotes transient and repetitive localized generation and subsequent rupture of nuclear protein-filled nuclear bubbles. This NE rupture leads to discharge of apoptogenic nuclear proteins from the nucleus to the cytosol, a process that can contribute to the death process. Therefore, the NE may play a role as mediator of cell death at early stages of apoptosis. The NE can also serve as a platform for assembly of complexes that regulate the death process. Thus, the NE should be viewed as both a mediator of the cell death process and a target.

20.
Dev Cell ; 51(5): 602-616.e12, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794718

RESUMO

Mutations in the lamin A/C gene (LMNA) cause cardiomyopathy and also disrupt nuclear positioning in fibroblasts. LMNA mutations causing cardiomyopathy elevate ERK1/2 activity in the heart, and inhibition of the ERK1/2 kinase activity ameliorates pathology, but the downstream effectors remain largely unknown. We now show that cardiomyocytes from mice with an Lmna mutation and elevated cardiac ERK1/2 activity have altered nuclear positioning. In fibroblasts, ERK1/2 activation negatively regulated nuclear movement by phosphorylating S498 of FHOD1. Expression of an unphosphorylatable FHOD1 variant rescued the nuclear movement defect in fibroblasts expressing a cardiomyopathy-causing lamin A mutant. In hearts of mice with LMNA mutation-induced cardiomyopathy, ERK1/2 mediated phosphorylation of FHOD3, an isoform highly expressed in cardiac tissue. Phosphorylation of FHOD1 and FHOD3 inhibited their actin bundling activity. These results show that phosphorylation of FHOD proteins by ERK1/2 is a critical switch for nuclear positioning and may play a role in the pathogenesis of cardiomyopathy caused by LMNA mutations.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Proteínas Fetais/metabolismo , Forminas/metabolismo , Laminas/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Células 3T3 , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cardiomiopatia Dilatada/genética , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas Fetais/genética , Forminas/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Mutação , Miócitos Cardíacos/patologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...